
Deep Learning Suite
Contact: Prasanna Balaprakash (pbalapra@anl.gov), Venkat Vishwanath (venkat@anl.gov),
Kalyan Kumaran (kumaran@anl.gov), ALCF, Argonne National Laboratory

Summary Version
1.0

Purpose of Benchmark
The deep learning suite contains: CANDLE benchmark codes implement deep learning
architectures that are relevant to problems in cancer; Convolutional Neural Networks (CNNs)
that comprises convolutional layers followed by fully connected layers; LSTM recurrent neural
network (RNN) architecture that remembers values over arbitrary intervals to deal with temporal
and time-series prediction; and, resnet-50 distributed training code for classification in ImageNet
dataset at scale.

Characteristics of Benchmark
CANDLE:
CANDLE benchmark codes implement deep learning architectures that are relevant to problems
in cancer. These architectures address problems at different biological scales, specifically
problems at the molecular, cellular and population scales. We use two diverse benchmark
problems, namely: a) P1B1, a sparse autoencoder to compress the expression profile into a
low-dimensional vector, and, b) P3B1 a multi-task deep neural net for data extraction from
clinical reports.

Convolutional Networks:
Convolutional Neural Network (CNN) is comprised of convolutional layers followed by fully
connected layers. In this benchmark we target CNN architecture to take advantage of the 2D
structure for image data set. This benchmark includes AlexNet, GoogleNet, Overfeat, VGG
reference examples.

Long short-term memory (LSTM):
LSTM is a recurrent neural network (RNN) architecture that remembers values over arbitrary
intervals to deal with temporal and time-series prediction.

The Candle, Convolution networks and LSTM benchmarks are to be run in throughput mode
individually on the entire system. We are interested in the total number of instances we can run
concurrently for each benchmark across the entire system and the associated maximum time for

each instance in comparison to the time taken to run 14000 instances across a 20PF Titan
system.

ResNet-50 for imagenet:
This benchmark code implements resnet-50 distributed training for imagenet data using Keras
and Horovod.

Mechanics of Building Benchmark

All the benchmark codes are implemented in python.

1. Setup python 3.6.2 environment.
2. Install the following the python packages with the corresponding versions and

dependencies
a. Keras>=2.0.3
b. tensorflow>=1.0.1
c. horovod>= 0.11.3

3. For resnet-50 benchmark, download ImageNet Challenge 2012 training and validation
data set. See the following script for an example:

https://github.com/avolkov1/keras_experiments/blob/master/examples/build_imagenet_data/do
wnload_imagenet.sh

Mechanics of Running Benchmark

Candle Benchmarks

> cd candle/Benchmarks/Pilot1/P1B1
> python p1b1_baseline_keras2.py

> cd candle/Benchmarks/Pilot3/P3B1
> python p3b1_baseline_keras2.py

Note: When you run the benchmarks for the first time, the benchmarks will download the
required training and testing data. Algorithmic and implementation changes are not allowed for
baseline runs.

For reference, you can also download the relevant Candle datasets from:
P1B1:
http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B1/P1B1.train.csv'
http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B1/P1B1.test.csv

https://github.com/avolkov1/keras_experiments/blob/master/examples/build_imagenet_data/download_imagenet.sh
https://github.com/avolkov1/keras_experiments/blob/master/examples/build_imagenet_data/download_imagenet.sh
http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B1/P1B1.train.csv
http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B1/P1B1.test.csv

P3B1:
http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P3B1/P3B1_data.tgz

Convnet Benchmarks
>cd convnet-benchmarks/tensorflow
>python benchmark_alexnet.py
>python benchmark_googlenet.py
>python benchmark_overfeat.py
>python benchmark_vgg.py

Note: By default, the code will run on a GPU because of NHWC mode. Vendors are only
allowed to change the source code to port onto CPUs. Algorithmic and implementation changes
are not allowed for baseline runs.

LSTM/RNN Benchmarks
> cd rnn-benchmarks/tensorflow
> python rnn.py -n basic_lstm -b 128 -l 1024 -s 30

Note: By default, the code will run on GPU because of NHWC mode. Vendors are only allowed
to change the source code to port onto CPUs. Algorithmic and implementation changes are not
allowed for baseline runs.

Resnet-50
 keras_imagenet_resnet50.py is the source code for Resnet-50

Run Rules for Throughput Case - Candle, Convnets, and LSTM
Note: Reference timings and accuracy from Titan can be found at the end of the document and
also in the spreadsheet.

Base run: Suite is run in single precision. Changes for porting to CPU are allowed. Vendors
can use updated versions of Keras, Tensorflow and related dependencies. Vendors are allowed
to modify the code to run multiple instances on a single GPU/CPU. Vendors can use math
libraries of their choice. The candle data set should be on a global namespace reachable from
all nodes. The vendors are allowed to increase the number of epochs until the training reaches
the reference accuracy. The benchmark source code with any modification (for CPUs) together
with instructions for installing and running the code, including the the libraries used, should be
reported.

http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P3B1/P3B1_data.tgz

Optimized run: Vendors can optimize the code and use different frameworks (for example
mxnet, pytorch, CNTK etc instead of tensorflow). Vendors can also use different
implementations of alexnet, vgg, overfeat, vgg, LSTM, p1b1, p3b1. Vendors can run in reduced
precision to obtain results. In this case, the minimum acceptable accuracy is within 1% of the
baseline reference accuracy. The precision must be reported and the version of the routines
must be supported in a library. The benchmark source code with any modification together with
instructions for installing and running the code, including the the libraries used, should be
reported.

Run Rules for Data Parallel Training with Resnet for ImageNet

Base run: Suite is run in single precision. Vendors will run 50 copies of the same problem on
their system. Changes for porting to CPU are allowed. Vendors can use updated versions of
Keras, Tensorflow and related dependencies. Vendors can use math libraries of their choice.
Vendors are allowed to change the batch size, learning rate, learning schedule. Vendors are
allowed to increase the number of epochs (from 90) for training convergence. Vendors are not
allowed to reduce the default number of epochs (=90). Vendors can make changes to allow for
code portability across tensorflow versions and they should report all changes. The imagenet
data set should be on a global namespace reachable from all nodes. The benchmark source
code with any modification together with instructions for installing and running the code,
including the the libraries used, should be reported.

Optimized run: Vendors can optimize the code and use different frameworks (for example
mxnet, pytorch, CNTK etc instead of tensorflow). Vendors can also use different
implementations of Resnet-50. Vendors can also run in reduced precision to obtain results. In
this case, the minimum acceptable accuracy (top-1) is 74.9%.

The precision must be reported and the version of the routines must be supported in a library.
The benchmark source code with any modification together with instructions for installing and
running the code, including the the libraries used, should be reported.

Computing the FOM

For the two candle benchmarks, the runs should satisfy the reference accuracy (for p1b1 test
correlation of 0.7808 and for p3b1 0.5637, given by the geometric mean of 6 accuracy values).
For each candle benchmark, we are interested in the total number of instances we can run
concurrently across the entire proposed system and the maximum time across all instances. We
will compare these with the maximum time when we run 14000 instances of each candle
benchmark across a 20PF Titan system. First, for each instance of a benchmark, we calculate
the time. Next, we calculate the maximum time (max_time) across all instances. To compute
the FOM of each candle benchmark, we compute the ratio of the titan time (max_titan) to the
time on the proposed system (max_proposed), and multiply this by the ratio of the number of

concurrent instances on the proposed system to the number of instances on titan (14000). The
FOM of candle benchmark is given by the geometric mean of the two FOMs.

For each convnet benchmark, we are interested in the total number of instances we can run
concurrently across the entire proposed system and the maximum time across all instances. We
will compare these with the maximum time when we run 14000 instances of each benchmark
across a 20PF Titan system. First, for each instance of a benchmark, we calculate the average
time per batch for forward + backward (tfbw) across 100 steps. Next, we calculate the maximum
tfbw (max_tfbw) across all instances. To compute the FOM of the benchmark, we compute the
ratio of the titan time (max_tfbw_titan) to the time on the proposed system
(max_tfbw_proposed), and multiply this by the ratio of the number of concurrent instances on
the proposed system to the number of instances on titan (14000). The FOM of convnet
benchmark is given by the geometric mean of the four individual FOMs.

For the LSTM benchmark, we are interested in the total number of instances we can run
concurrently across the entire proposed system and the maximum time across all instances. We
will compare these with the maximum time when we run 14000 instances of LSTM benchmark
across a 20PF Titan system. First, for each instance of a benchmark, we calculate the average
time per sample for forward + backward (tfbw) across 100 steps. Next, we calculate the
maximum tfbw (max_tfbw) across all instances. To compute the FOM, we compute the ratio of
the titan time (max_tfbw_titan) to the time on the proposed system (max_tfbw_proposed), and
multiply this by the ratio of the number of concurrent instances on the proposed system to the
number of instances on titan (14000).

Note:Convnet and LSTM benchmarks do not target accuracy. They are primarily used for
measuring the operations involved in convolutional neural nets and LSTMs.

RESNET

For the ResNet-50 for Imagenet benchmark, reference values are computed based on 20% of
the 20 PF titan system run. The ResNet-50 runs on the proposed system should satisfy the
reference accuracy (74.9% top-1 test accuracy). The improvement in runtime is given by the
ratio of the resnet_time_ref to the resnet_time, where resnet_time_ref and resnet_time are
maximum of the runtimes obtained on the reference system and proposed system across all
resnet instances, respectively. The resnet_time_ref is obtained using 5 instances of resnet
concurrently on a 20PF titan system and taking the maximum runtime across all instances. The
resnet_time on the proposed system should be obtained by running 50 instances of resnet
concurrently on the full proposed system and taking the maximum runtime across all instances.
Each of the 50 instance should occupy 2% or lower of the proposed system. The FOM of
ResNet-50 benchmark is given by the product of the improvement in runtime and 10 which is
the additional number of instances of the benchmark the vendor is running. Please note that any
preprocessing and I/O time should be included in the runtime.

For the optimized FOM, we will consider both the improvement in the time to solution and the
solution quality. The improvement in runtime is given by the ratio of resnet_time_ref to the
resnet_time. The improvement in accuracy is given by 1+ ((resnet_acc - 74.9)/(100-74.9))^3
where resnet_acc is the top-1 test accuracy obtained on the proposed system, respectively. The
optimized FOM is given by the product of improvement in runtime, accuracy, and 10.

The overall FOM is computed separately for base and optimized run as weighted mean of the
four FOM values from candle, convnet, RNN, ResNet-50 for Imagenet, where the weights are
5.0, 1.0, 2.0, 5.0, respectively.

Reference timings and accuracy from Titan

candle time accuracy

 p1b1 1886.4036 0.7808

 p3b1 52.1051 0.5637

 Forward across 100 steps
Forward-backward across

100 steps

convnets alexnet 0.0715 s/batch 0.2116 s/batch

 googlenet 0.3428 s/batch 1.1633 s/batch

 overfeat 0.2112 s/batch 0.6434 s/batch

 vgg 0.4264 s/batch 1.6375 s/batch

 Forward across 100 steps
Forward-backward across

100 steps

LSTM 0.0005268 s/sample 0.001411 s/sample

 time accuracy

Imagnet Resnet50 1500s 74.9%(top-1 test accuracy)

